back to top
HomeReviewsProgrammed axon degeneration: mechanism, inhibition and therapeutic potential

Programmed axon degeneration: mechanism, inhibition and therapeutic potential


  • Neukomm, L. J. & Freeman, M. R. Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol. 24, 515–523 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, R. W. & Crish, S. D. Editorial: axonopathy in neurodegenerative disease. Front. Neurosci. 12, 769 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waller, A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Phil. Trans. R. Soc. Lond. 140, 423–429 (1850).


    Google Scholar
     

  • Llobet Rosell, A. & Neukomm, L. J. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol. 9, 190118 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Figley, M. D. & DiAntonio, A. The SARM1 axon degeneration pathway: control of the NAD+ metabolome regulates axon survival in health and disease. Curr. Opin. Neurobiol. 63, 59–66 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sambashivan, S. & Freeman, M. R. SARM1 signaling mechanisms in the injured nervous system. Curr. Opin. Neurobiol. 69, 247–255 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, M. P. & Höke, A. Programmed axon degeneration: from mouse to mechanism to medicine. Nat. Rev. Neurosci. 21, 183–196 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waller, T. J. & Collins, C. A. Multifaceted roles of SARM1 in axon degeneration and signaling. Front. Cell Neurosci. 16, 958900 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexandris, A. & Koliatsos, V. E. NAD+, axonal maintenance, and neurological disease. Antioxid. Redox Signal. 39, 1167–1184 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGuinness, H. Y., Gu, W., Shi, Y., Kobe, B. & Ve, T. SARM1-dependent axon degeneration: nucleotide signaling, neurodegenerative disorders, toxicity, and therapeutic opportunities. Neuroscientist 30, 473–492 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Loreto, A., Antoniou, C., Merlini, E., Gilley, J. & Coleman, M. P. NMN: the NAD precursor at the intersection between axon degeneration and anti-ageing therapies. Neurosci. Res. 197, 18–24 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y., Wang, Y. & Yang, J. NAD+-dependent mechanism of pathological axon degeneration. Cell Insight 1, 100019 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alberti, C. et al. Charcot-Marie-tooth disease type 2A: an update on pathogenesis and therapeutic perspectives. Neurobiol. Dis. 193, 106467 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Loreto, A., Merlini, E. & Coleman, M. P. Programmed axon death: a promising target for treating retinal and optic nerve disorders. Eye 38, 1802–1809 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarasiuk, O., Molteni, L., Malacrida, A. & Nicolini, G. The role of NMNAT2/SARM1 in neuropathy development. Biology 13, 61 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. B. et al. Axonal degeneration in chemotherapy-induced peripheral neurotoxicity: clinical and experimental evidence. J. Neurol. Neurosurg. Psychiatry 94, 962–972 (2023).

    PubMed 

    Google Scholar
     

  • Merlini, E., Coleman, M. P. & Loreto, A. Mitochondrial dysfunction as a trigger of programmed axon death. Trends Neurosci. 45, 53–63 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Krauss, R., Bosanac, T., Devraj, R., Engber, T. & Hughes, R. O. Axons matter: the promise of treating neurodegenerative disorders by targeting SARM1-Mediated axonal degeneration. Trends Pharmacol. Sci. 41, 281–293 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Conforti, L., Gilley, J. & Coleman, M. P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 15, 394–409 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Di Stefano, M. et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ. 22, 731–742 (2015). This study demonstrates that NMN accumulates after axotomy and its rise drives axon degeneration.

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. The NAD+-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature 33, 245–246 (2020). This article reveals the cryo-electron microscopy structure of the full-length SARM1 protein and identified an NAD+-mediated self-inhibitory mechanism via binding to the ARM domain.


    Google Scholar
     

  • Figley, M. D. et al. SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration. Neuron 109, 1118–1136.e11 (2021). This study demonstrates that SARM1, an inducible pro-degenerative NADase, is a metabolic sensor activated by an increase in the NMN-to-NAD+ ratio.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, V. et al. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS ONE 9, e113939 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilley, J., Orsomando, G., Nascimento-Ferreira, I. & Coleman, M. P. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep. 10, 1974–1981 (2015). This report reveals that axon degeneration specifically induced by NMNAT2 depletion requires SARM1, suggesting a linear NMNAT2–SARM1 signalling pathway.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasaki, Y., Nakagawa, T., Mao, X., DiAntonio, A. & Milbrandt, J. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion. eLife 5, 1010 (2016).


    Google Scholar
     

  • Llobet Rosell, A. et al. The NAD+ precursor NMN activates dSarm to trigger axon degeneration in Drosophila. eLife 11, e80245 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imai, S.-I. Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases. Curr. Pharm. Des. 15, 20–28 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratajczak, J. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. 7, 13103 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasaki, Y., Araki, T. & Milbrandt, J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J. Neurosci. 26, 8484–8491 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasaki, Y. et al. Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection. Exp. Neurol. 345, 113842 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, F., Lau, C., Dahlmann, M. & Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem. 280, 36334–36341 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Yan, T. et al. Nmnat2 delays axon degeneration in superior cervical ganglia dependent on its NAD synthesis activity. Neurochem. Int. 56, 101–106 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Summers, D. W., Milbrandt, J. & DiAntonio, A. Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proc. Natl Acad. Sci. USA 11, E8746–E8754 (2018).


    Google Scholar
     

  • Yang, J. et al. Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell 160, 161–176 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, L. J. et al. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. eLife 6, 545 (2017).


    Google Scholar
     

  • Miller, B. R. et al. A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat. Neurosci. 12, 387–389 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, J. E. et al. SCG10 is a JNK target in the axonal degeneration pathway. Proc. Natl Acad. Sci. USA 109, E3696–E3705 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilley, J. & Coleman, M. P. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 8, e1000300 (2010). This article reveals endogenous NMNAT2 as a labile axon survival factor whose constant replenishment by anterograde axonal transport is a limiting factor for axon survival.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, X. et al. The highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLoS Biol. 10, e1001440 (2012). This study reveals that the evolutionarily conserved E3 ubiquitin ligase Highwire in Drosophila promotes axon degeneration by inducing the rapid degradation of the Nmnat protein.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babetto, E., Beirowski, B., Russler, E. V., Milbrandt, J. & DiAntonio, A. The Phr1 ubiquitin ligase promotes injury-induced axon self-destruction. Cell Rep. 3, 1422–1429 (2013). This article demonstrates that the mammalian E3 ubiquitin ligase MYCBP2 (also known as PHR1) promotes the rapid degradation of NMNAT2 in axons of the peripheral and central nervous system.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neukomm, L. J., Burdett, T. C., Gonzalez, M. A., Zuchner, S. & Freeman, M. R. Rapid in vivo forward genetic approach for identifying axon death genes in Drosophila. Proc. Natl Acad. Sci. USA 111, 9965–9970 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desbois, M. et al. PAM forms an atypical SCF ubiquitin ligase complex that ubiquitinates and degrades NMNAT2. J. Biol. Chem. 293, 13897–13909 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamagishi, Y. & Tessier-Lavigne, M. An atypical SCF-like ubiquitin ligase complex promotes wallerian degeneration through regulation of axonal Nmnat2. Cell Rep. 17, 774–782 (2016). This study reveals that the E3 ubiquitin ligase component SKP1A regulates protein levels of NMNAT2 in axons.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milde, S., Gilley, J. & Coleman, M. P. Subcellular localization determines the stability and axon protective capacity of axon survival factor nmnat2. PLoS Biol. 11, e1001539 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milde, S., Fox, A. N., Freeman, M. R. & Coleman, M. P. Deletions within its subcellular targeting domain enhance the axon protective capacity of Nmnat2 in vivo. Sci. Rep. 3, 2567 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osterloh, J. M. et al. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337, 481–484 (2012). This report identifies Sarm in Drosophila and SARM1 in mice as a executioner of axotomy-induced PAxD.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerdts, J., Summers, D. W., Sasaki, Y., DiAntonio, A. & Milbrandt, J. Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J. Neurosci. 33, 13569–13580 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348, 453–457 (2015). This study reveals that the dimerization of the SARM1 TIR domains initiates a rapid axonal breakdown of NAD+ after axotomy.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343.e5 (2017). This article demonstrates that TIR domains of SARM1 have intrinsic NADase activity and deplete axonal NAD+ to induce pathological axon loss.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neukomm, L. J. et al. Axon death pathways converge on axundead to promote functional and structural axon disassembly. Neuron 95, 78–91.e5 (2017). This study identifies Axundead as required for axotomy-induced axon degeneration downstream of Sarm and Nmnat in Drosophila.

    CAS 
    PubMed 

    Google Scholar
     

  • Sporny, M. et al. Structural evidence for an octameric ring arrangement of SARM1. J. Mol. Biol. 431, 3591–3605 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Horsefield, S. et al. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793–799 (2019). This article reveals that NAD+ cleavage in the octameric SARM1 structure is mediated by TIR domain self-association both in animals and plants.

    CAS 
    PubMed 

    Google Scholar
     

  • Bratkowski, M. et al. Structural and mechanistic regulation of the pro-degenerative NAD hydrolase SARM1. Cell Rep. 32, 107999 (2020). This report reveals mechanistic insights into the regulation of SARM1 activity by revealing cryo-electron microscopy structures of autoinhibited and activated SARM1.

    CAS 
    PubMed 

    Google Scholar
     

  • Sporny, M. et al. Structural basis for SARM1 inhibition and activation under energetic stress. eLife 9, W344 (2020).


    Google Scholar
     

  • Shen, C. et al. Multiple domain interfaces mediate SARM1 autoinhibition. Proc. Natl Acad. Sci. USA 118, e2023151118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Y. et al. Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Mol. Cell 82, 1643–1659.e10 (2022). This study demonstrates that a base-exchange reaction underlies potent orthosteric inhibition of SARM1 by a series of isoquinoline compounds.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angeletti, C. et al. SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites. iScience 25, 103812 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Essuman, K. et al. TIR domain proteins are an ancient family of NAD+-consuming enzymes. Curr. Biol. 28, 421–430.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parrish, A. B., Freel, C. D. & Kornbluth, S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol. 5, a008672 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. Y. et al. A cell-permeant mimetic of NMN activates SARM1 to produce cyclic ADP-ribose and induce non-apoptotic cell death. iScience 15, 452–466 (2019). This article demonstrates that CZ-48, a cell-permeant mimetic of NMN, activates SARM1 to induce non-apoptotic cell death.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. H. et al. Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate. eLife 10, e67381 (2021). This report identifies PC6 as a substrate of SARM1 that undergoes a large red fluorescent shift upon conversion into PAD6, enabling its use as a SARM1 activity reporter.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, E. B., Glass, J. D. & Griffin, J. W. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J. Neurosci. 15, 6445–6452 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlaepfer, W. W. Calcium-induced degeneration of axoplasm in isolated segments of rat peripheral nerve. Brain Res. 69, 203–215 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • Schlaepfer, W. W. Structural alterations of peripheral nerve induced by the calcium ionophore A23187. Brain Res. 136, 1–9 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  • Knöferle, J. et al. Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc. Natl Acad. Sci. USA 107, 6064–6069 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adalbert, R. et al. Intra-axonal calcium changes after axotomy in wild-type and slow wallerian degeneration axons. Neuroscience 225, 44–54 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Avery, M. A. et al. WldS prevents axon degeneration through increased mitochondrial flux and enhanced mitochondrial Ca2+ buffering. Curr. Biol. 22, 596–600 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vargas, M. E., Yamagishi, Y., Tessier-Lavigne, M. & Sagasti, A. Live imaging of calcium dynamics during axon degeneration reveals two functionally distinct phases of calcium influx. J. Neurosci. 35, 15026–15038 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, B., Carson, R., Hume, R. I. & Collins, C. A. Sodium and potassium currents influence wallerian degeneration of injured Drosophila axons. J. Neurosci. 33, 18728–18739 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villegas, R. et al. Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J. Neurosci. 34, 7179–7189 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loreto, A., Di Stefano, M., Gering, M. & Conforti, L. Wallerian degeneration is executed by an NMN-SARM1-dependent late Ca2+ influx but only modestly influenced by mitochondria. Cell Rep. 13, 2539–2552 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Ko, K. W., DeVault, L., Sasaki, Y., Milbrandt, J. & DiAntonio, A. Live imaging reveals the cellular events downstream of SARM1 activation. eLife 10, e71148 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guse, A. H. Calcium mobilizing second messengers derived from NAD. Biochim. Biophys. Acta. 1854, 1132–1137 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki, Y. et al. cADPR is a gene dosage-sensitive biomarker of SARM1 activity in healthy, compromised, and degenerating axons. Exp. Neurol. 329, 113252 (2020). This study reveals that cADPR, a product of SARM1-dependent cleavage of NAD+, serves as a biomarker in cultured neurons, sciatic nerve and the brain in preclinical models.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garb, J. et al. The SARM1 TIR domain produces glycocyclic ADPR molecules as minor products. PLoS ONE 19, e0302251 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blomgren, K. Calpastatin is upregulated and acts as a suicide substrate to calpains in neonatal rat hypoxia‐ischemia. Ann. NY Acad. Sci. 890, 270–271 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Regulation of axon degeneration after injury and in development by the endogenous calpain inhibitor calpastatin. Neuron 80, 1175–1189 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Ma, M. et al. Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. Neurobiol. Dis. 56, 34–46 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macqueen, D. J. & Wilcox, A. H. Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses. Open Biol. 4, 130219 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bridge, P. M. et al. Nerve crush injuries — a model for axonotmesis. Exp. Neurol. 127, 284–290 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Maxwell, W. L., Bartlett, E. & Morgan, H. Wallerian degeneration in the optic nerve stretch-injury model of traumatic brain injury: a stereological analysis. J. Neurotrauma 32, 780–790 (2015).

    PubMed 

    Google Scholar
     

  • Geisler, S. Augustus Waller’s foresight realized: SARM1 in peripheral neuropathies. Curr. Opin. Neurobiol. 87, 102884 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffin, J. W. et al. Macrophage responses and myelin clearance during Wallerian degeneration: relevance to immune-mediated demyelination. J. Neuroimmunol. 40, 153–165 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Vaquié, A. et al. Injured axons instruct schwann cells to build constricting actin spheres to accelerate axonal disintegration. Cell Rep. 27, 3152–3166.e7 (2019).

    PubMed 

    Google Scholar
     

  • MacDonald, J. M. et al. The Drosophila cell corpse engulfment receptor draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki, Y. & Milbrandt, J. Axonal degeneration is blocked by nicotinamide mononucleotide adenylyltransferase (Nmnat) protein transduction into transected axons. J. Biol. Chem. 285, 41211–41215 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes, R. O. et al. Small molecule SARM1 inhibitors recapitulate the SARM1/– phenotype and allow recovery of a metastable pool of axons fated to degenerate. Cell Rep. 34, 108588 (2021). This report describes a potent SMI of SARM1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mack, T. G. et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4, 1199–1206 (2001). This article reports that the Ube4b/Nmnat chimeric gene is necessary and sufficient to protect injured axons.

    CAS 
    PubMed 

    Google Scholar
     

  • Lunn, E. R., Perry, V. H., Brown, M. C., Rosen, H. & Gordon, S. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur. J. Neurosci. 1, 27–33 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Paglione, M. et al. Local translatome sustains synaptic function in impaired Wallerian degeneration. EMBO Rep. 26, 61–83 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasaki, Y., Vohra, B. P. S., Lund, F. E. & Milbrandt, J. Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J. Neurosci. 29, 5525–5535 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasaki, Y., Vohra, B. P. S., Baloh, R. H. & Milbrandt, J. Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J. Neurosci. 29, 6526–6534 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Y. et al. Overexpression of WldS or Nmnat2 in mauthner cells by single-cell electroporation delays axon degeneration in live Zebrafish. J. Neurosci. Res. 88, 3319–3327 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Avery, M. A., Sheehan, A. E., Kerr, K. S., Wang, J. & Freeman, M. R. Wld S requires Nmnat1 enzymatic activity and N16-VCP interactions to suppress Wallerian degeneration. J. Cell Biol. 184, 501–513 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babetto, E. et al. Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo. J. Neurosci. 30, 13291–13304 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paglione, M., Llobet Rosell, A., Chatton, J.-Y. & Neukomm, L. J. Morphological and functional evaluation of axons and their synapses during axon death in Drosophila melanogaster. J. Vis. Exp. https://doi.org/10.3791/60865 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fang, Y., Soares, L., Teng, X., Geary, M. & Bonini, N. M. A novel Drosophila model of nerve injury reveals an essential role of Nmnat in maintaining axonal integrity. Curr. Biol. 22, 590–595 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Stefano, M. et al. NMN deamidase delays Wallerian degeneration and rescues axonal defects caused by NMNAT2 deficiency in vivo. Curr. Biol. 27, 784–794 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Gould, S. A. et al. Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration. Cell Rep. 37, 110108 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. Differential effects of SARM1 inhibition in traumatic glaucoma and EAE optic neuropathies. Mol. Ther. Nucleic Acids 32, 13–27 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loreto, A. et al. SARM1 activation induces reversible mitochondrial dysfunction and can be prevented in human neurons by antisense oligonucleotides. Neurobiol. Dis. 213, 106986 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geisler, S. et al. Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. J. Exp. Med. 216, 294–303 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bratkowski, M. et al. Uncompetitive, adduct-forming SARM1 inhibitors are neuroprotective in preclinical models of nerve injury and disease. Neuron 110, 3711–3726.e16 (2022). This study reveals that BEIs are highly potent and confer compelling neuroprotection in pre-clinical models of neurological injury and disease.

    CAS 
    PubMed 

    Google Scholar
     

  • Leahey, R. R. et al. Therapeutic safety implications of SARM1 active site inhibitors: subinhibitory concentrations cause neurodegeneration. npj Drug Discov. 2, 21 (2025). This study shows that subinhibitory concentrations of SARM1 BEIs, under mildly SARM1-activating conditions, paradoxically cause sustained SARM1 activation and toxicity.


    Google Scholar
     

  • Giroud, M. et al. Discovery of a potent SARM1 base-exchange inhibitor with in vivo efficacy. J. Med. Chem. 68, 6558–6575 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Mani, A. et al. SARM1 base-exchange inhibitors induce SARM1 activation and neurodegeneration at low doses. npj Drug Discov. 2, 12 (2025).


    Google Scholar
     

  • Bosanac, T. et al. Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy. Brain 44, 3226–3238 (2021). This report demonstrates that potent and selective irreversible isothiazole inhibitors of SARM1 enzymatic activity protect axons in a mouse model of chemotherapy-induced peripheral neuropathy.


    Google Scholar
     

  • Loring, H. S., Parelkar, S. S., Mondal, S. & Thompson, P. R. Identification of the first noncompetitive SARM1 inhibitors. Bioorganic Med. Chem. 28, 115644 (2020).

    CAS 

    Google Scholar
     

  • Feldman, H. C. et al. Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain. Proc. Natl Acad. Sci. USA 119, e2208457119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khazma, T. et al. A duplex structure of SARM1 octamers stabilized by a new inhibitor. Cell Mol. Life Sci. 80, 16 (2023).

    CAS 

    Google Scholar
     

  • Schlaepfer, W. W. & Hasler, M. B. Characterization of the calcium-induced disruption of neurofilaments in rat peripheral nerve. Brain Res. 168, 299–309 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • Jayaram, H. N., Kusumanchi, P. & Yalowitz, J. A. NMNAT expression and its relation to NAD metabolism. Curr. Med. Chem. 18, 1962–1972 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Yamamoto, M. et al. Nmnat3 is dispensable in mitochondrial NAD level maintenance in vivo. PLoS ONE 11, e0147037 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilley, J., Adalbert, R., Yu, G. & Coleman, M. P. Rescue of peripheral and CNS axon defects in mice lacking NMNAT2. J. Neurosci. 33, 13410–13424 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loreto, A. et al. Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiol. Dis. 134, 104678 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geisler, S. et al. Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI Insight 4, e129920 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasaki, Y. et al. SARM1 depletion rescues NMNAT1-dependent photoreceptor cell death and retinal degeneration. eLife 9, 817 (2020).


    Google Scholar
     

  • Grozio, A. et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat. Metab. 1, 47–57 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, M. S. & Brenner, C. Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nat. Metab. 1, 660–661 (2019).

    PubMed 

    Google Scholar
     

  • Grozio, A. et al. Reply to: absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nat. Metab. 1, 662–665 (2019).

    PubMed 

    Google Scholar
     

  • Loreto, A. et al. Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1. eLife 10, e72823 (2021). This study reveals that the neurotoxin vacor, metabolized by NAMPT into the NMN analogue VMN, also acts as a potent SARM1 activator.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T. et al. Neurotoxins subvert the allosteric activation mechanism of SARM1 to induce neuronal loss. Cell Rep. 37, 109872 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. et al. Stepwise activation of SARM1 for cell death and axon degeneration revealed by a biosynthetic NMN mimic. Proc. Natl. Acad. Sci. USA 122, e2424906122 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilley, J. et al. Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders. eLife 10, e70905 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloom, A. J. et al. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients. Mol. Neurodegener. 17, 1 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. J. et al. Acidic pH irreversibly activates the signaling enzyme SARM1. FEBS J. 288, 6783–6794 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Loring, H. S. et al. A phase transition enhances the catalytic activity of SARM1, an NAD+ glycohydrolase involved in neurodegeneration. eLife 10, e66694 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Icso, J. D. & Thompson, P. R. A phase transition reduces the threshold for nicotinamide mononucleotide-based activation of SARM1, an NAD(P) hydrolase, to physiologically relevant levels. J. Biol. Chem. 299, 105284 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tribble, J. R. et al. NMNAT2 is a druggable target to drive neuronal NAD production. Nat. Commun. 15, 6256 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, F. et al. NMNAT2 is downregulated in glaucomatous RGCs and RGC-specific gene therapy rescues neurodegeneration and visual function. Mol. Ther. 30, 1421–1431 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05492201 (2022). The phase I clinical trial using SARM1 SMIs in healthy participants.

  • Australian New Zealand ClinicalTrials Registry. ANZCTR https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=385567 (2024). Successfully completed phase I clinical trial using SARM1 SMIs in healthy volunteers.

  • Coleman, M. P. Axon biology in ALS: mechanisms of axon degeneration and prospects for therapy. Neurotherapeutics 19, 1133–1144 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moss, K. R. & Höke, A. Targeting the programmed axon degeneration pathway as a potential therapeutic for Charcot-Marie-Tooth disease. Brain Res. 1727, 146539 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Herbosa, C. G., Perez, R., Jaeger, A., Dy, C. J. & Brogan, D. M. Inhibition of SARM1 reduces neuropathic pain in a spared nerve injury rodent model. Muscle Nerve 71, 670–679 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lukacs, M. et al. Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp. Neurol. 320, 112961 (2019). This report reveals severe biallelic LOF mutations in human NMNAT2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hicks, A. N., Campeau, L., Burmeister, D., Bishop, C. E. & Andersson, K. Lack of nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2): consequences for mouse bladder development and function. Neurourol. Urodyn. 32, 1130–1136 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dingwall, C. B. et al. Macrophage depletion blocks congenital SARM1-dependent neuropathy. J. Clin. Invest. 132, e159800 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huppke, P. et al. Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia. Exp. Neurol. 320, 112958 (2019). The study reveals homozygous partial LOF mutations in human NMNAT2.

    CAS 
    PubMed 

    Google Scholar
     

  • Chiang, P.-W. et al. Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis. Nat. Genet. 44, 972–974 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Falk, M. J. et al. NMNAT1 mutations cause Leber congenital amaurosis. Nat. Genet. 44, 1040–1045 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koenekoop, R. K. et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat. Genet. 44, 1035–1039 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perrault, I. et al. Mutations in NMNAT1 cause Leber congenital amaurosis with early-onset severe macular and optic atrophy. Nat. Genet. 44, 975–977 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Yi, Z. et al. Clinical features and genetic spectrum of NMNAT1-associated retinal degeneration. Eye 36, 2279–2285 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Kumaran, N., Robson, A. G. & Michaelides, M. A novel case series of NMNAT1-associated early-onset retinal dystrophy: extending the phenotypic spectrum. Retin. Cases Brief Rep. 15, 139–144 (2021).

    PubMed 

    Google Scholar
     

  • Sasaki, Y., Margolin, Z., Borgo, B., Havranek, J. J. & Milbrandt, J. Characterization of Leber congenital amaurosis-associated NMNAT1 mutants*. J. Biol. Chem. 290, 17228–17238 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ademi, M., Yang, X., Coleman, M. P. & Gilley, J. Natural variants of human SARM1 cause both intrinsic and dominant loss-of-function influencing axon survival. Sci. Rep. 12, 13846 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Rheenen, W. et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet. 48, 1043–1048 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fogh, I. et al. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum. Mol. Genet. 23, 2220–2231 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • LeWitt, P. A. The neurotoxicity of the rat poison vacor — a clinical study of 12 cases. N. Engl. J. Med. 302, 73–77 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Ling, Y. et al. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Dev. Ther. 15, 4289–4338 (2021).

    CAS 

    Google Scholar
     

  • Antenor-Dorsey, J. A. V. & O’Malley, K. L. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity. Mol. Neurodegener. 7, 5 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brazill, J. M., Cruz, B., Zhu, Y. & Zhai, R. G. Nmnat mitigates sensory dysfunction in a Drosophila model of paclitaxel-induced peripheral neuropathy. Dis. Model. Mech. 11, dmm032938 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Press, C. & Milbrandt, J. Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress. J. Neurosci. 28, 4861–4871 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. S. et al. The Wld S protein protects against axonal degeneration: a model of gene therapy for peripheral neuropathy. Ann. Neurol. 50, 773–779 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M.-S., Wu, Y., Culver, D. G. & Glass, J. D. The gene for slow Wallerian degeneration (Wlds) is also protective against vincristine neuropathy. Neurobiol. Dis. 8, 155–161 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Geisler, S. et al. Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139, 3092–3108 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Summers, D. W., Gibson, D. A., DiAntonio, A. & Milbrandt, J. SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc. Natl Acad. Sci. USA 113, E6271–E6280 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turkiew, E., Falconer, D., Reed, N. & Höke, A. Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy. J. Peripher. Nerv. Syst. 22, 162–171 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilley, J., Mayer, P. R., Yu, G. & Coleman, M. P. Low levels of NMNAT2 compromise axon development and survival. Hum. Mol. Genet. 28, 448–458 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Sarm1 activation produces cADPR to increase intra-axonal Ca++ and promote axon degeneration in PIPN. J. Cell Biol. 221, e202106080 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Hinz, F. I. et al. Context-specific stress causes compartmentalized SARM1 activation and local degeneration in cortical neurons. J. Neurosci. 44, e2424232024 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y.-H., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 is required in human derived sensory neurons for injury-induced and neurotoxic axon degeneration. Exp. Neurol. 339, 113636 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez-Deza, J., Slavutsky, A. L., Nebiyou, M. & Pichon, C. E. L. Local production of reactive oxygen species drives vincristine-induced axon degeneration. Cell Death Dis. 14, 807 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cetinkaya-Fisgin, A. et al. Cisplatin induced neurotoxicity is mediated by Sarm1 and calpain activation. Sci. Rep. 10, 21889 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gould, S. A. et al. Protection against oxaliplatin-induced mechanical and thermal hypersensitivity in Sarm1–/– mice. Exp. Neurol. 338, 113607 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Snavely, A. R. et al. Bortezomib-induced neurotoxicity in human neurons is the consequence of nicotinamide adenine dinucleotide depletion. Dis. Model. Mech. 15, dmm049358 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klemmensen, M. M., Borrowman, S. H., Pearce, C., Pyles, B. & Chandra, B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 21, e00292 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Yamada, Y. et al. A SARM1/mitochondrial feedback loop drives neuropathogenesis in a Charcot-Marie-Tooth disease type 2A rat model. J. Clin. Invest. 132, e161566 (2022).


    Google Scholar
     

  • Peters, O. M. et al. Loss of Sarm1 does not suppress motor neuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet. 11, 3761–3771 (2018).


    Google Scholar
     

  • Collins, J. M. et al. Sarm1 knockout modifies biomarkers of neurodegeneration and spinal cord circuitry but not disease progression in the mSOD1G93A mouse model of ALS. Neurobiol. Dis. 172, 105821 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Velde, C. V., Garcia, M. L., Yin, X., Trapp, B. D. & Cleveland, D. W. The neuroprotective factor WldS does not attenuate mutant SOD1-mediated motor neuron disease. Neuromolecular Med. 5, 193–203 (2004).


    Google Scholar
     

  • Fischer, L. R. et al. The WldS gene modestly prolongs survival in the SOD1G93A fALS mouse. Neurobiol. Dis. 19, 293–300 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • White, M. A. et al. Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropathol. Commun. 7, 166 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scotter, E. L., Chen, H.-J. & Shaw, C. E. TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics 12, 352–363 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, O. M. et al. Genetic diversity of axon degenerative mechanisms in models of Parkinson’s disease. Neurobiol. Dis. 155, 105368 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antoniou, C. et al. Chronically low NMNAT2 expression causes Sub-lethal SARM1 activation and altered response to nicotinamide riboside in axons. Mol. Neurobiol. 62, 3903–3917 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y. et al. Sarm1-mediated neurodegeneration within the enteric nervous system protects against local inflammation of the colon. Protein Cell 12, 621–638 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, S. et al. Targeting SARM1 as a novel neuroprotective therapy in neurotropic viral infections. J. Neuroinflammation 22, 113 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundaramoorthy, V. et al. Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLoS Pathog. 16, e1008343 (2020). This study demonstrates that SARM1 is necessary for the rapid progression of rabies-induced axonal degeneration and that it hinders the spread of rabies virus among connected neurons.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, G. et al. PARP-1 mediated cell death is directly activated by ZIKV infection. Virology 537, 254–262 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Pang, H. et al. Aberrant NAD+ metabolism underlies Zika virus-induced microcephaly. Nat. Metab. 3, 1109–1124 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Crawford, C. L. et al. SARM1 depletion slows axon degeneration in a CNS model of neurotropic viral infection. Front. Mol. Neurosci. 15, 860410 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szretter, K. J. et al. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile virus pathogenesis. J. Virol. 83, 9329–9338 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee, P., Woods, T. A., Moore, R. A. & Peterson, K. E. Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity 38, 705–716 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, Y.-J. et al. SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection. J. Immunol. 191, 875–883 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Uccellini, M. B. et al. Passenger mutations confound phenotypes of SARM1-deficient mice. Cell Rep. 31, 107498 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouse, B. T. & Sehrawat, S. Immunity and immunopathology to viruses: what decides the outcome? Nat. Rev. Immunol. 10, 514–526 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, C., Li, B., Frontzek, K., Liu, Y. & Aguzzi, A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J. Exp. Med. 216, 743–756 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, L. et al. SARM1 deletion in parvalbumin neurons is associated with autism-like behaviors in mice. Cell Death Dis. 13, 638 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izadifar, A. et al. Axon morphogenesis and maintenance require an evolutionary conserved safeguard function of Wnk kinases antagonizing Sarm and Axed. Neuron 109, 2864–2883.e8 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, C., Wairkar, Y. P., Collins, C. A. & DiAntonio, A. Highwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements. J. Neurosci. 25, 9557–9566 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, H. I. et al. Highwire regulates synaptic growth in Drosophila. Neuron 26, 313–329 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C.-Y., Lin, C.-W., Chang, C.-Y., Jiang, S.-T. & Hsueh, Y.-P. Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J. Cell Biol. 193, 769–784 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, C.-W., Liu, H.-Y., Chen, C.-Y. & Hsueh, Y.-P. Neuronally-expressed Sarm1 regulates expression of inflammatory and antiviral cytokines in brains. Innate Immun. 20, 161–172 (2013).

    PubMed 

    Google Scholar
     

  • Lin, C.-W. & Hsueh, Y.-P. Sarm1, a neuronal inflammatory regulator, controls social interaction, associative memory and cognitive flexibility in mice. Brain Behav. Immun. 37, 142–151 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, C.-W., Chen, C.-Y., Cheng, S.-J., Hu, H.-T. & Hsueh, Y.-P. Sarm1 deficiency impairs synaptic function and leads to behavioral deficits, which can be ameliorated by an mGluR allosteric modulator. Front. Cell. Neurosci. 8, 87 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W., Zhu, W., Chen, J., Ali, T. & Li, S. SARM1 deficiency induced depressive-like behavior via AMPKα/p-eEF2 axis to synapse dysfunction. Neuropharmacology 262, 110206 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Green, S. A. et al. Optimization of brain penetrant SARM1 orthosteric inhibitors and discovery of their paradoxical subinhibitory activation. ACS Med. Chem. Lett. 16, 1147–1154 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Reardon, H. T. et al. Base exchange inhibitors of SARM1 form mononucleotide adducts and activate SARM1 in vivo. Preprint at bioRxiv https://doi.org/10.1101/2025.04.22.649875 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. SARM1 activation promotes axonal degeneration via a two-step phase transition. Nat. Chem. Biol. https://doi.org/10.1038/s41589-025-02009-9 (2025). This article reveals that SARM1 BEIs form covalent inhibitor–ADPR conjugates within TIR dimers, acting as molecular glues to promote superhelical TIR filament-mediated SARM1 assemblies that condense into stable, phase-separated aggregates with full NADase activity.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murata, H. et al. c-Jun N-terminal kinase (JNK)-mediated phosphorylation of SARM1 regulates NAD+ cleavage activity to inhibit mitochondrial respiration. J. Biol. Chem. 293, 18933–18943 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murata, H. et al. Phosphorylated SARM1 is involved in the pathological process of rotenone-induced neurodegeneration. J. Biochem. 174, 533–548 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopkins, E. L., Gu, W., Kobe, B. & Coleman, M. P. A novel NAD signaling mechanism in axon degeneration and its relationship to innate immunity. Front. Mol. Biosci. 8, 703532 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avetisyan, A., Barria, R., Sheehan, A. & Freeman, M. R. An ionic sensor acts in parallel to dsarm to promote neurodegeneration. Preprint at bioRxiv https://doi.org/10.1101/2024.10.29.620922 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, W. J. et al. Gap junction intercellular communications regulates activation of SARM1 and protects against axonal degeneration. Cell Death Dis. 16, 13 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dingwall, C. B. et al. Suppressing phagocyte activation by overexpressing the phosphatidylserine lipase ABHD12 preserves sarmopathic nerves. iScience 28, 112626 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babetto, E., Wong, K. M. & Beirowski, B. A glycolytic shift in Schwann cells supports injured axons. Nat. Neurosci. 23, 1215–1228 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutschler, C. et al. Schwann cells are axo-protective after injury irrespective of myelination status in mouse Schwann cell/neuron cocultures. J. Cell Sci. 136, jcs261557 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mariano, V., Domínguez-Iturza, N., Neukomm, L. J. & Bagni, C. Maintenance mechanisms of circuit-integrated axons. Curr. Opin. Neurobiol. 53, 162–173 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Salvadores, N., Sanhueza, M., Manque, P. & Court, F. A. Axonal degeneration during aging and its functional role in neurodegenerative disorders. Front. Neurosci. 11, 451 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faust, T. E., Gunner, G. & Schafer, D. P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat. Rev. Neurosci. 22, 657–673 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furusawa, K. & Emoto, K. Spatiotemporal regulation of developmental neurite pruning: molecular and cellular insights from Drosophila models. Neurosci. Res. 167, 54–63 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Riccomagno, M. M. & Kolodkin, A. L. Sculpting neural circuits by axon and dendrite pruning. Annu. Rev. Cell Dev. Biol. 31, 779–805 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuldiner, O. & Yaron, A. Mechanisms of developmental neurite pruning. Cell. Mol. Life Sci. 72, 101–119 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Knoerl, R. et al. Exploring clinical markers of Axon degeneration processes in chemotherapy-induced peripheral neuropathy among young adults receiving vincristine or paclitaxel. BMC Neurol. 24, 366 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577–589 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders — towards clinical application. Nat. Rev. Neurol. 20, 269–287 (2024).

    PubMed 

    Google Scholar
     

  • Rosengren, L. E., Karlsson, J., Karlsson, J., Persson, L. I. & Wikkelsø, C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J. Neurochem. 67, 2013–2018 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Gisslén, M. et al. Plasma concentration of the Neurofilament Light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3, 135–140 (2016).

    PubMed 

    Google Scholar
     

  • Kuhle, J. et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. 54, 1655–1661 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fazal, S. V. et al. SARM1 detection in myelinating glia: sarm1/Sarm1 is dispensable for PNS and CNS myelination in zebrafish and mice. Front. Cell. Neurosci. 17, 1158388 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, K. et al. Base-exchange enabling the visualization of SARM1 activities in sciatic nerve-injured mice. ACS Sens. 8, 767–773 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular