back to top
HomeReviewsInsights into infectious diseases through ancient pathogen genomics

Insights into infectious diseases through ancient pathogen genomics

- Advertisement -


  • Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).


    Google Scholar
     

  • Spigelman, M. & Lemma, E. The use of the polymerase chain reaction (PCR) to detect Mycobacterium tuberculosis in ancient skeletons. Int. J. Osteoarchaeol. 3, 137–143 (1993).


    Google Scholar
     

  • Salo, W. L., Aufderheide, A. C., Buikstra, J. & Holcomb, T. A. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc. Natl Acad. Sci. USA 91, 2091–2094 (1994).

    PubMed Central 

    Google Scholar
     

  • Arriaza, B. T., Salo, W., Aufderheide, A. C. & Holcomb, T. A. Pre-Columbian tuberculosis in northern Chile: molecular and skeletal evidence. Am. J. Phys. Anthropol. 98, 37–45 (1995).


    Google Scholar
     

  • Drancourt, M., Aboudharam, G., Signoli, M., Dutour, O. & Raoult, D. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc. Natl Acad. Sci. USA 95, 12637–12640 (1998).

    PubMed Central 

    Google Scholar
     

  • Zink, A., Haas, C., Reishl, U., Szeimies, U. & Nerlich, A. G. Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J. Med. Microbiol. 50, 355–366 (2001).


    Google Scholar
     

  • Orlando, L. et al. Ancient DNA analysis. Nat. Rev. Methods Primers 1, 15 (2021).


    Google Scholar
     

  • Spyrou, M. A., Bos, K. I., Herbig, A. & Krause, J. Ancient pathogen genomics as an emerging tool for infectious disease research. Nat. Rev. Genet. 20, 323–340 (2019).

    PubMed Central 

    Google Scholar
     

  • Bos, K. I. et al. Paleomicrobiology: diagnosis and evolution of ancient pathogens. Annu. Rev. Microbiol. 73, 639–666 (2019).


    Google Scholar
     

  • Duchêne, S., Ho, S. Y. W., Carmichael, A. G., Holmes, E. C. & Poinar, H. The recovery, interpretation and use of ancient pathogen genomes. Curr. Biol. 30, R1215–R1231 (2020).

    PubMed Central 

    Google Scholar
     

  • Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).


    Google Scholar
     

  • Bos, K. I. et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011).

    PubMed Central 

    Google Scholar
     

  • Lewis, C. M., Akinyi, M. Y., DeWitte, S. N. & Stone, A. C. Ancient pathogens provide a window into health and well-being. Proc. Natl Acad. Sci. USA 120, e2209476119 (2023).

    PubMed Central 

    Google Scholar
     

  • Harper, K. Plagues upon the Earth: Disease and the Course of Human History (Princeton Univ. Press, 2021).

  • Bryce, T. The Kingdom of the Hittites (Oxford Univ. Press, 2005).

  • Haensch, S. et al. Distinct clones of Yersinia pestis caused the Black Death. PLoS Pathog. 6, e1001134 (2010).

    PubMed Central 

    Google Scholar
     

  • Fellows Yates, J. A. et al. Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir. Sci. Data 8, 31 (2021).

    PubMed Central 

    Google Scholar
     

  • Spyrou, M. A. et al. The source of the Black Death in fourteenth-century central Eurasia. Nature 606, 718–724 (2022).

    PubMed Central 

    Google Scholar
     

  • Guellil, M. et al. A genomic and historical synthesis of plague in 18th century Eurasia. Proc. Natl Acad. Sci. USA 117, 28328–28335 (2020).

    PubMed Central 

    Google Scholar
     

  • Spyrou, M. A. et al. Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nat. Commun. 10, 4470 (2019).

    PubMed Central 

    Google Scholar
     

  • Bos, K. I. et al. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. eLife 5, e12994 (2016).

    PubMed Central 

    Google Scholar
     

  • Keller, M. et al. Ancient Yersinia pestis genomes from across western Europe reveal early diversification during the First Pandemic (541–750). Proc. Natl Acad. Sci. USA 116, 12363–12372 (2019).

    PubMed Central 

    Google Scholar
     

  • Wagner, D. M. et al. Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect. Dis. 14, 319–326 (2014).


    Google Scholar
     

  • Damgaard, P. d. B. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).


    Google Scholar
     

  • Keller, M. et al. A refined phylochronology of the Second Plague Pandemic in western Eurasia. Preprint at bioRxiv https://doi.org/10.1101/2023.07.18.549544 (2023).

  • Vågene, ÅJ. et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2, 520–528 (2018).


    Google Scholar
     

  • Zhou, Z. et al. Pan-genome analysis of ancient and modern Salmonella enterica demonstrates genomic stability of the invasive Para C lineage for millennia. Curr. Biol. 28, 2420–2428.e10 (2018).

    PubMed Central 

    Google Scholar
     

  • Haller, M. et al. Mass burial genomics reveals outbreak of enteric paratyphoid fever in the late medieval trade city Lübeck. iScience 24, 102419 (2021).

    PubMed Central 

    Google Scholar
     

  • Majander, K. et al. Ancient bacterial genomes reveal a high diversity of Treponema pallidum strains in early modern Europe. Curr. Biol. 30, 3788–3803.e10 (2020).


    Google Scholar
     

  • Giffin, K. et al. A treponemal genome from an historic plague victim supports a recent emergence of yaws and its presence in 15th century Europe. Sci. Rep. 10, 9499 (2020).

    PubMed Central 

    Google Scholar
     

  • Barquera, R. et al. Ancient genomes reveal a deep history of treponemal disease in the Americas. Nature https://doi.org/10.1038/s41586-024-08515-5 (2024).

  • Pfrengle, S. et al. Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biol. 19, 220 (2021).

    PubMed Central 

    Google Scholar
     

  • Schuenemann, V. J. et al. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog. 14, e1006997 (2018).

    PubMed Central 

    Google Scholar
     

  • Sabin, S. et al. A seventeenth-century Mycobacterium tuberculosis genome supports a neolithic emergence of the Mycobacterium tuberculosis complex. Genome Biol. 21, 201 (2020).

    PubMed Central 

    Google Scholar
     

  • Urban, C. et al. Ancient Mycobacterium leprae genome reveals medieval English red squirrels as animal leprosy host. Curr. Biol. 34, 2221–2230 (2024).


    Google Scholar
     

  • Hopkins, D. R. & Lythcott, G. I. Princes and Peasants: Smallpox in History (Univ. Chicago Press, 1983).

  • Mühlemann, B. et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science 369, eaaw8977 (2020).


    Google Scholar
     

  • Duggan, A. T. et al. 17th century variola virus reveals the recent history of smallpox. Curr. Biol. 26, 3407–3412 (2016).

    PubMed Central 

    Google Scholar
     

  • Patrono, L. V. et al. Archival influenza virus genomes from Europe reveal genomic variability during the 1918 pandemic. Nat. Commun. 13, 2314 (2022).

    PubMed Central 

    Google Scholar
     

  • Worobey, M. et al. 1970s and ‘patient 0’ HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature 539, 98–101 (2016).

    PubMed Central 

    Google Scholar
     

  • Newfield, T. P. & Labuhn, I. Realizing consilience in studies of pre-instrumental climate and pre-laboratory disease. J. Interdisc. Hist. 48, 211–240 (2017).


    Google Scholar
     

  • Eaton, K. et al. Plagued by a cryptic clock: insight and issues from the global phylogeny of Yersinia pestis. Commun. Biol. 6, 23 (2023).

    PubMed Central 

    Google Scholar
     

  • Green, M. H. The four black deaths. Am. Hist. Rev. 125, 1601–1631 (2020).


    Google Scholar
     

  • Zuckerkandl, E. & Pauling, L. in Horizons in Biochemistry (eds Kasha, M. & Pullman, B.) 189–225 (Academic, 1962).

  • Ho, S. Y. W. & Duchêne, S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol. Ecol. 23, 5947–5965 (2014).


    Google Scholar
     

  • Ho, S. Y. W. & Duchêne, S. Dating the emergence of human pathogens. Science 368, 1310–1311 (2020).


    Google Scholar
     

  • Drummond, A. J., Pybus, O. G., Rambaut, A., Forsberg, R. & Rodrigo, A. G. Measurably evolving populations. Trends Ecol. Evol. 18, 481–488 (2003).


    Google Scholar
     

  • Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2, vew007 (2016).

    PubMed Central 

    Google Scholar
     

  • Duchene, S. et al. Bayesian evaluation of temporal signal in measurably evolving populations. Mol. Biol. Evol. 37, 3363–3379 (2020).


    Google Scholar
     

  • Yuen, L. K. W. et al. Tracing ancient human migrations into Sahul using hepatitis B virus genomes. Mol. Biol. Evol. 36, 942–954 (2019).


    Google Scholar
     

  • Paraskevis, D. et al. Dating the origin and dispersal of hepatitis B virus infection in humans and primates. Hepatology 57, 908–916 (2013).


    Google Scholar
     

  • Kolb, A. W., Ané, C. & Brandt, C. R. Using HSV-1 genome phylogenetics to track past human migrations. PLoS ONE 8, e76267 (2013).

    PubMed Central 

    Google Scholar
     

  • Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

    PubMed Central 

    Google Scholar
     

  • Sun, B. et al. Origin and dispersal history of hepatitis B virus in eastern Eurasia. Nat. Commun. 15, 2951 (2024).

    PubMed Central 

    Google Scholar
     

  • Guellil, M. et al. Ancient herpes simplex 1 genomes reveal recent viral structure in Eurasia. Sci. Adv. 8, eabo4435 (2022).

    PubMed Central 

    Google Scholar
     

  • Aiewsakun, P. & Katzourakis, A. Time-dependent rate phenomenon in viruses. J. Virol. 90, 7184–7195 (2016).

    PubMed Central 

    Google Scholar
     

  • Duchêne, S. et al. Genome-scale rates of evolutionary change in bacteria. Microb. Genom. 2, e000094 (2016).

    PubMed Central 

    Google Scholar
     

  • Zhou, Y. & Holmes, E. C. Bayesian estimates of the evolutionary rate and age of hepatitis B virus. J. Mol. Evol. 65, 197–205 (2007).


    Google Scholar
     

  • Mühlemann, B. et al. Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans. Proc. Natl Acad. Sci. USA 115, 7557–7562 (2018).

    PubMed Central 

    Google Scholar
     

  • Parsyan, A., Szmaragd, C., Allain, J.-P. & Candotti, D. Identification and genetic diversity of two human parvovirus B19 genotype 3 subtypes. J. Gen. Virol. 88, 428–431 (2007).


    Google Scholar
     

  • Norja, P., Eis-Hübinger, A. M., Söderlund-Venermo, M., Hedman, K. & Simmonds, P. Rapid sequence change and geographical spread of human parvovirus B19: comparison of B19 virus evolution in acute and persistent infections. J. Virol. 82, 6427–6433 (2008).

    PubMed Central 

    Google Scholar
     

  • Firth, C. et al. Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol. Biol. Evol. 27, 2038–2051 (2010).

    PubMed Central 

    Google Scholar
     

  • Düx, A. et al. Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science 368, 1367–1370 (2020).

    PubMed Central 

    Google Scholar
     

  • Wertheim, J. O. & Kosakovsky Pond, S. L. Purifying selection can obscure the ancient age of viral lineages. Mol. Biol. Evol. 28, 3355–3365 (2011).

    PubMed Central 

    Google Scholar
     

  • Kimura, H. et al. Molecular evolution of haemagglutinin (H) gene in measles virus. Sci. Rep. 5, 11648 (2015).

    PubMed Central 

    Google Scholar
     

  • Andrades Valtueña, A. et al. Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague. Proc. Natl Acad. Sci. USA 119, e2116722119 (2022).

    PubMed Central 

    Google Scholar
     

  • Andrades Valtueña, A. et al. The Stone Age plague and its persistence in Eurasia. Curr. Biol. 27, 3683–3691.e8 (2017).


    Google Scholar
     

  • Harper, K. & Armelagos, G. The changing disease-scape in the third epidemiological transition. Int. J. Environ. Res. Public Health 7, 675–697 (2010).

    PubMed Central 

    Google Scholar
     

  • Long, G. S. et al. A 14th century CE Brucella melitensis genome and the recent expansion of the Western Mediterranean clade. PLoS Pathog. 19, e1011538 (2023).

    PubMed Central 

    Google Scholar
     

  • L’Hôte, L. et al. An 8000 years old genome reveals the Neolithic origin of the zoonosis Brucella melitensis. Nat. Commun. 15, 6132 (2024).

    PubMed Central 

    Google Scholar
     

  • Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).

    PubMed Central 

    Google Scholar
     

  • Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707 (2002).


    Google Scholar
     

  • Harper, K. N., Zuckerman, M. K., Turner, B. L. & Armelagos, G. J. Primates, pathogens, and evolution: a context for understanding emerging disease. Primates Pathog. Evol. https://doi.org/10.1007/978-1-4614-7181-3_13 (2013).

  • Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the Last Glacial Maximum. Proc. Natl Acad. Sci. USA 112, 8232–8237 (2015).

    PubMed Central 

    Google Scholar
     

  • Membrebe, J. V., Suchard, M. A., Rambaut, A., Baele, G. & Lemey, P. Bayesian inference of evolutionary histories under time-dependent substitution rates. Mol. Biol. Evol. 36, 1793–1803 (2019).

    PubMed Central 

    Google Scholar
     

  • Ghafari, M., Simmonds, P., Pybus, O. G. & Katzourakis, A. A mechanistic evolutionary model explains the time-dependent pattern of substitution rates in viruses. Curr. Biol. 31, 4689–4696.e5 (2021).

    PubMed Central 

    Google Scholar
     

  • Kocher, A. et al. Ten millennia of hepatitis B virus evolution. Science 374, 182–188 (2021).


    Google Scholar
     

  • Bos, K. I. et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014).

    PubMed Central 

    Google Scholar
     

  • Light-Maka, I. et al. Bronze Age Yersinia pestis genome from sheep sheds light on hosts and evolution of a prehistoric plague lineage. Cell 188, 5748–5762 (2025).


    Google Scholar
     

  • Spyrou, M. A. et al. Historical Yersinia pestis genomes reveal the European Black Death as the source of ancient and modern plague pandemics. Cell Host Microbe 19, 874–881 (2016).


    Google Scholar
     

  • Eaton, K. et al. Emergence, continuity, and evolution of Yersinia pestis throughout medieval and early modern Denmark. Curr. Biol. CB 33, 1147–1152.e5 (2023).


    Google Scholar
     

  • Morozova, I. et al. New ancient eastern European Yersinia pestis genomes illuminate the dispersal of plague in Europe. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190569 (2020).


    Google Scholar
     

  • Schmid, B. V. et al. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe. Proc. Natl Acad. Sci. USA 112, 3020–3025 (2015).

    PubMed Central 

    Google Scholar
     

  • Stenseth, N. Chr. et al. No evidence for persistent natural plague reservoirs in historical and modern Europe. Proc. Natl Acad. Sci. USA 119, e2209816119 (2022).

    PubMed Central 

    Google Scholar
     

  • Bramanti, B., Wu, Y., Yang, R., Cui, Y. & Stenseth, N. Chr. Assessing the origins of the European plagues following the Black Death: a synthesis of genomic, historical, and ecological information. Proc. Natl Acad. Sci. USA 118, e2101940118 (2021).

    PubMed Central 

    Google Scholar
     

  • Pollitzer, R. Plague studies. Bull. World Health Organ. 4, 475–533 (1951).

    PubMed Central 

    Google Scholar
     

  • Stenseth, N. Chr., Dean, K. R. & Bramanti, B. The end of plague in Europe. Centaurus 64, 61–72 (2022).


    Google Scholar
     

  • Gaul, E. & Spyrou, M. A. Historical plague pandemics: perspectives from ancient DNA. Trends Microbiol. 33, 7–10 (2024).


    Google Scholar
     

  • Rascovan, N. et al. Emergence and spread of basal lineages of Yersinia pestis during the Neolithic decline. Cell 176, 295–305.e10 (2019).


    Google Scholar
     

  • Susat, J. et al. A 5,000-year-old hunter-gatherer already plagued by Yersinia pestis. Cell Rep. 35, 109278 (2021).


    Google Scholar
     

  • Seersholm, F. V. et al. Repeated plague infections across six generations of Neolithic farmers. Nature 632, 114–121 (2024).

    PubMed Central 

    Google Scholar
     

  • Macleod, R. et al. Lethal plague outbreaks in Lake Baikal hunter–gatherers 5500 years ago. Preprint at bioRxiv https://doi.org/10.1101/2024.11.13.623490 (2024).

  • Michel, M. et al. Ancient plasmodium genomes shed light on the history of human malaria. Nature 631, 125–133 (2024).

    PubMed Central 

    Google Scholar
     

  • de-Dios, T. et al. Genetic affinities of an eradicated European Plasmodium falciparum strain. Microb. Genom. 5, e000289 (2019).

    PubMed Central 

    Google Scholar
     

  • Mühlemann, B. et al. Ancient hepatitis B viruses from the Bronze Age to the medieval period. Nature 557, 418–423 (2018).


    Google Scholar
     

  • Pugach, I., Delfin, F., Gunnarsdottir, E., Kayser, M. & Stoneking, M. Genome-wide data substantiate Holocene gene flow from India to Australia. Proc. Natl Acad. Sci. USA 110, 1803–1808 (2013).

    PubMed Central 

    Google Scholar
     

  • Borry, M., Hübner, A., Rohrlach, A. B. & Warinner, C. PyDamage: automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly. PeerJ 9, e11845 (2021).

    PubMed Central 

    Google Scholar
     

  • Key, F. M. et al. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 4, 324–333 (2020).

    PubMed Central 

    Google Scholar
     

  • Swali, P. et al. Yersinia pestis genomes reveal plague in Britain 4000 years ago. Nat. Commun. 14, 2930 (2023).

    PubMed Central 

    Google Scholar
     

  • Rasmussen, S. et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163, 571–582 (2015).

    PubMed Central 

    Google Scholar
     

  • Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).

    PubMed Central 

    Google Scholar
     

  • Bland, D. M., Miarinjara, A., Bosio, C. F., Calarco, J. & Hinnebusch, B. J. Acquisition of Yersinia murine toxin enabled Yersinia pestis to expand the range of mammalian hosts that sustain flea-borne plague. PLoS Pathog. 17, e1009995 (2021).

    PubMed Central 

    Google Scholar
     

  • Susat, J. et al. Neolithic Yersinia pestis infections in humans and a dog. Commun. Biol. 7, 1013 (2024).

    PubMed Central 

    Google Scholar
     

  • Susat, J. et al. Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the second plague pandemic. Sci. Rep. 10, 14628 (2020).

    PubMed Central 

    Google Scholar
     

  • Sidhu, R. K. et al. Attenuation of virulence in Yersinia pestis across three plague pandemics. Science 388, eadt3880 (2025).


    Google Scholar
     

  • Cui, Y. et al. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc. Natl Acad. Sci. USA 110, 577–582 (2013).


    Google Scholar
     

  • Guellil, M. et al. Genomic blueprint of a relapsing fever pathogen in 15th century Scandinavia. Proc. Natl Acad. Sci. USA 115, 10422–10427 (2018).

    PubMed Central 

    Google Scholar
     

  • Swali, P. et al. Ancient Borrelia genomes document the evolutionary history of louse-borne relapsing fever. Science 388, eadr2147 (2025).

    PubMed Central 

    Google Scholar
     

  • Bonczarowska, J. H. et al. Pathogen genomics study of an early medieval community in Germany reveals extensive co-infections. Genome Biol. 23, 250 (2022).

    PubMed Central 

    Google Scholar
     

  • Fiddaman, S. R. et al. Ancient chicken remains reveal the origins of virulence in Marek’s disease virus. Science 382, 1276–1281 (2023).


    Google Scholar
     

  • Wolf, J. M., Carli, S. D., Pereira, V. R. Z. B., Simon, D. & Lunge, V. R. Temporal evolution and global spread of hepatitis B virus genotype G. J. Viral Hepat. 28, 393–399 (2021).


    Google Scholar
     

  • Li, K. et al. Critical role of the 36-nucleotide insertion in hepatitis B virus genotype G in core protein expression, genome replication, and virion secretion. J. Virol. 81, 9202–9215 (2007).

    PubMed Central 

    Google Scholar
     

  • Dimopoulos, E. A. et al. HAYSTAC: a Bayesian framework for robust and rapid species identification in high-throughput sequencing data. PLoS Comput. Biol. 18, e1010493 (2022).

    PubMed Central 

    Google Scholar
     

  • Hübler, R. et al. HOPS: automated detection and authentication of pathogen DNA in archaeological remains. Genome Biol. 20, 280 (2019).

    PubMed Central 

    Google Scholar
     

  • Pochon, Z. et al. aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow. Genome Biol. 24, 242 (2023).

    PubMed Central 

    Google Scholar
     

  • Sikora, M. et al. The spatiotemporal distribution of human pathogens in ancient Eurasia. Nature https://doi.org/10.1038/s41586-025-09192-8 (2025).

  • Featherstone, L. A., Zhang, J. M., Vaughan, T. G. & Duchene, S. Epidemiological inference from pathogen genomes: a review of phylodynamic models and applications. Virus Evol. 8, veac045 (2022).

    PubMed Central 

    Google Scholar
     

  • Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).


    Google Scholar
     

  • Stadler, T., Kühnert, D., Bonhoeffer, S. & Drummond, A. J. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl Acad. Sci. USA 110, 228–233 (2013).


    Google Scholar
     

  • Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).

    PubMed Central 

    Google Scholar
     

  • Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

    PubMed Central 

    Google Scholar
     

  • Kühnert, D., Stadler, T., Vaughan, T. G. & Drummond, A. J. Phylodynamics with migration: a computational framework to quantify population structure from genomic data. Mol. Biol. Evol. 33, 2102–2116 (2016).

    PubMed Central 

    Google Scholar
     

  • Müller, N. F., Rasmussen, D. & Stadler, T. MASCOT: parameter and state inference under the marginal structured coalescent approximation. Bioinformatics 34, 3843–3848 (2018).

    PubMed Central 

    Google Scholar
     

  • Urban, C. et al. An ancient influenza genome from Switzerland allows deeper insights into host adaptation during the 1918 flu pandemic in Europe. BMC Biol. 23, 179 (2025).

    PubMed Central 

    Google Scholar
     

  • Ramirez, D. A., Saka, H. A. & Nores, R. Detection of Vibrio cholerae aDNA in human burials from the fifth cholera pandemic in Argentina (1886–1887 AD). Int. J. Paleopathol. 32, 74–79 (2021).


    Google Scholar
     

  • Lebrasseur, O., More, K. D. & Orlando, L. Equine herpesvirus 4 infected domestic horses associated with Sintashta spoke-wheeled chariots around 4,000 years ago. Virus Evol. 10, vead087 (2024).

    PubMed Central 

    Google Scholar
     

  • Schuenemann, V. J. et al. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341, 179–183 (2013).


    Google Scholar
     

  • Parker, C. et al. A systematic investigation of human DNA preservation in medieval skeletons. Sci. Rep. 10, 18225 (2020).

    PubMed Central 

    Google Scholar
     

  • Margaryan, A. et al. Ancient pathogen DNA in human teeth and petrous bones. Ecol. Evol. 8, 3534–3542 (2018).

    PubMed Central 

    Google Scholar
     

  • Maixner, F. et al. The 5300-year-old Helicobacter pylori genome of the Iceman. Science 351, 162–165 (2016).

    PubMed Central 

    Google Scholar
     

  • Devault, A. M. et al. Second-Pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. N. Engl. J. Med. 370, 334–340 (2014).


    Google Scholar
     

  • Long, G. S. et al. A 16th century Escherichia coli draft genome associated with an opportunistic bile infection. Commun. Biol. 5, 599 (2022).

    PubMed Central 

    Google Scholar
     

  • Devault, A. M. et al. A molecular portrait of maternal sepsis from Byzantine Troy. eLife 6, e20983 (2017).

    PubMed Central 

    Google Scholar
     

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    PubMed Central 

    Google Scholar
     

  • Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).


    Google Scholar
     

  • Gamba, C. et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol. Ecol. Resour. 16, 459–469 (2016).


    Google Scholar
     

  • Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).


    Google Scholar
     

  • Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).


    Google Scholar
     

  • Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007).

    PubMed Central 

    Google Scholar
     

  • Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010).


    Google Scholar
     

  • Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130624 (2015).


    Google Scholar
     

  • Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 19, 198 (2018).

    PubMed Central 

    Google Scholar
     

  • Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).


    Google Scholar
     

  • Krause-Kyora, B. et al. Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. eLife 7, e36666 (2018).

    PubMed Central 

    Google Scholar
     

  • McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    PubMed Central 

    Google Scholar
     

  • Fumagalli, M. et al. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 7, e1002355 (2011).

    PubMed Central 

    Google Scholar
     

  • Zeberg, H. & Pääbo, S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc. Natl Acad. Sci. USA 118, e2026309118 (2021).

    PubMed Central 

    Google Scholar
     

  • Zeberg, H. & Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587, 610–612 (2020).


    Google Scholar
     

  • Dannemann, M., Andrés, A. M. & Kelso, J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human Toll-like receptors. Am. J. Hum. Genet. 98, 22–33 (2016).

    PubMed Central 

    Google Scholar
     

  • Abi-Rached, L. et al. The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334, 89–94 (2011).

    PubMed Central 

    Google Scholar
     

  • Mallick, S. et al. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci. Data 11, 182 (2024).

    PubMed Central 

    Google Scholar
     

  • Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    PubMed Central 

    Google Scholar
     

  • Akbari, A. et al. Pervasive findings of directional selection realize the promise of ancient DNA to elucidate human adaptation. Preprint at bioRxiv https://doi.org/10.1101/2024.09.14.613021 (2024).

  • Kerner, G. et al. Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe. Cell Genom. 3, 100248 (2023).

    PubMed Central 

    Google Scholar
     

  • Irving-Pease, E. K. et al. The selection landscape and genetic legacy of ancient Eurasians. Nature 625, 312–320 (2024).

    PubMed Central 

    Google Scholar
     

  • Evershed, R. P. et al. Dairying, diseases and the evolution of lactase persistence in Europe. Nature 608, 336–345 (2022).

    PubMed Central 

    Google Scholar
     

  • Barrie, W. et al. Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations. Nature 625, 321–328 (2024).

    PubMed Central 

    Google Scholar
     

  • Kerner, G. et al. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. Am. J. Hum. Genet. 108, 517–524 (2021).

    PubMed Central 

    Google Scholar
     

  • Souilmi, Y. et al. An ancient viral epidemic involving host coronavirus interacting genes more than 20,000 years ago in East Asia. Curr. Biol. 31, 3504–3514.e9 (2021).

    PubMed Central 

    Google Scholar
     

  • Klunk, J. et al. Evolution of immune genes is associated with the Black Death. Nature 611, 312–319 (2022).

    PubMed Central 

    Google Scholar
     

  • Barton, A. R. et al. Insufficient evidence for natural selection associated with the Black Death. Nature 638, E19–E22 (2025).

    PubMed Central 

    Google Scholar
     

  • Vilgalys, T. P. et al. Reply to: Insufficient evidence for natural selection associated with the Black Death. Nature 638, E23–E29 (2025).


    Google Scholar
     

  • Immel, A. et al. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol. Biol. Evol. 38, 4059–4076 (2021).

    PubMed Central 

    Google Scholar
     

  • Hui, R. et al. Genetic history of Cambridgeshire before and after the Black Death. Sci. Adv. 10, eadi5903 (2024).

    PubMed Central 

    Google Scholar
     

  • Gopalakrishnan, S. et al. The population genomic legacy of the second plague pandemic. Curr. Biol. 32, 4743–4751.e6 (2022).

    PubMed Central 

    Google Scholar
     

  • Barquera, R. et al. Ancient genomes reveal insights into ritual life at Chichén Itzá. Nature 630, 912–919 (2024).

    PubMed Central 

    Google Scholar
     



  • Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -

    Most Popular