back to top
HomeReviewsSARS-CoV-2 variants: biology, pathogenicity, immunity and control

SARS-CoV-2 variants: biology, pathogenicity, immunity and control


  • Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). Identified a novel coronavirus from patients with pneumonia and proposed a probable bat origin for SARS-CoV-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pekar, J. E. et al. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science 377, 960–966 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Holmes, E. C. The emergence and evolution of SARS-CoV-2. Annu. Rev. Virol. 11, 21–42 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Worobey, M. et al. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 377, 951–959 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, W. J. et al. Surveillance of SARS-CoV-2 at the Huanan Seafood Market. Nature 631, 402–408 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Bloom, J. D. Importance of quantifying the number of viral reads in metagenomic sequencing of environmental samples from the Huanan Seafood Market. Virus Evol. 10, vead089 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Crits-Christoph, A. et al. Genetic tracing of market wildlife and viruses at the epicenter of the COVID-19 pandemic. Cell 187(5468-5482), e5411 (2024).


    Google Scholar
     

  • World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19 – 11 March 2020 https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020 (WHO, 2020). Marked the date the WHO officially declared the COVID-19 outbreak a global pandemic.

  • Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021). Confirmed the high efficacy and safety profile of the Moderna mRNA-1273 COVID-19 vaccine.

    Article 
    PubMed 

    Google Scholar
     

  • Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020). Demonstrated the safety and efficacy of the Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine.

    Article 
    PubMed 

    Google Scholar
     

  • Steele, M. K. et al. Estimated number of COVID-19 infections, hospitalizations, and deaths prevented among vaccinated persons in the US, december 2020 to september 2021. JAMA Netw. Open 5, e2220385 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baggen, J., Vanstreels, E., Jansen, S. & Daelemans, D. Cellular host factors for SARS-CoV-2 infection. Nat. Microbiol. 6, 1219–1232 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • V’Kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Steiner, S. et al. SARS-CoV-2 biology and host interactions. Nat. Rev. Microbiol. 22, 206–225 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • DeGrace, M. M. et al. Defining the risk of SARS-CoV-2 variants on immune protection. Nature 605, 640–652 (2022). Defined how different SARS-CoV-2 variants affect immune protection, particularly vaccine effectiveness.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mellis, I. A. et al. Do existing COVID-19 vaccines need to be updated in 2025? Preprint at bioRxiv https://doi.org/10.1101/2025.05.02.651777 (2025).

  • Guo, C. et al. Antigenic and virological characteristics of SARS-CoV-2 variants BA.3.2, XFG, and NB.1.8.1. Lancet Infect. Dis. 25, e374–e377 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Khare, S. et al. GISAID’s role in pandemic response. China CDC Wkly 3, 1049–1051 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Chall. 1, 33–46 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. KP.2-based monovalent mRNA vaccines robustly boost antibody responses to SARS-CoV-2. Lancet Infect. Dis. 25, e133–e134 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Mallajosyula, V. et al. CD8+ T cells specific for conserved coronavirus epitopes correlate with milder disease in COVID-19 patients. Sci. Immunol. 6, eabg5669 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Augusto, D. G. et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature 620, 128–136 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, D. E. et al. Lack of cross-neutralization by SARS patient sera towards SARS-CoV-2. Emerg. Microbes Infect. 9, 900–902 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e819 (2020). Tracked the spike D614G mutation; showed it increased the infectivity of the COVID-19 virus.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 370, 1464–1468 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116–121 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Weissman, D. et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29, 23–31.e24 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Roemer, C. et al. SARS-CoV-2 evolution in the Omicron era. Nat. Microbiol. 8, 1952–1959 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Fischer, W. et al. HIV-1 and SARS-CoV-2: patterns in the evolution of two pandemic pathogens. Cell Host Microbe 29, 1093–1110 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, V. et al. The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK. Virus Evol. 8, veac080 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, X. et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe 29, 529–539.e523 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P. et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593, 130–135 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gellenoncourt, S. et al. The spike-stabilizing D614G mutation interacts with S1/S2 cleavage site mutations to promote the infectious potential of SARS-CoV-2 variants. J. Virol. 96, e0130122 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020). Determined the structural basis for SARS-CoV-2 spike protein binding to the human ACE2 receptor.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e286 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P. et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 29, 747–751.e744 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815–821 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dejnirattisai, W. et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 184, 2939–2954.e2939 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 184, 2348–2361.e2346 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, M. et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat. Rev. Microbiol. 21, 112–124 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lopez Bernal, J. et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N. Engl. J. Med. 385, 585–594 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Andrews, N. et al. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N. Engl. J. Med. 386, 1532–1546 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Abu-Raddad, L. J., Chemaitelly, H., Butt, A. A. & National Study Group for, C.-V. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 variants. N. Engl. J. Med. 385, 187–189 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Olawoye, I. B. et al. Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria. Nat. Commun. 14, 811 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halfmann, P. J. et al. Characterization of the SARS-CoV-2 B.1.621 (Mu) variant. Sci. Transl. Med. 14, eabm4908 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cherian, S. et al. SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. Microorganisms 9, 1542 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furusawa, Y. et al. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. EBioMedicine 91, 104561 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Rep. 39, 110829 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuzmina, A. et al. Changes within the P681 residue of spike dictate cell fusion and syncytia formation of Delta and Omicron variants of SARS-CoV-2 with no effects on neutralization or infectivity. Heliyon 9, e16750 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ridgway, H. et al. Molecular epidemiology of SARS-CoV-2: the dominant role of arginine in mutations and infectivity. Viruses 15, 309 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276–280 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tada, T. et al. Partial resistance of SARS-CoV-2 Delta variants to vaccine-elicited antibodies and convalescent sera. iScience 24, 103341 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature 596, 273–275 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 184, 4220–4236.e4213 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603, 679–686 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, S. M. S. et al. Neutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat. Med. 28, 486–489 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carreno, J. M. et al. Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 602, 682–688 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022). Revealed that the Omicron variant escapes most SARS-CoV-2 neutralizing antibodies.

    Article 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, T. et al. Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science 376, eabn8897 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604, 553–556 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct. Target. Ther. 6, 430 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, P. et al. Evasion of neutralizing antibody responses by the SARS-CoV-2 BA.2.75 variant. Cell Host Microbe 30, 1518–1526.e1514 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US Food and Drug Administration. Update on COVID-19 Vaccine Booster Composition https://www.fda.gov/vaccines-blood-biologics/update-covid-19-vaccine-booster-composition (US FDA, 2023).

  • Planas, D. et al. Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies. Nat. Commun. 14, 824 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uraki, R. et al. Humoral immune evasion of the omicron subvariants BQ.1.1 and XBB. Lancet Infect. Dis. 23, 30–32 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186, 279–286.e278 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uraki, R. et al. Antiviral efficacy against and replicative fitness of an XBB.1.9.1 clinical isolate. iScience 26, 108147 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamasoba, D. et al. Virological characteristics of the SARS-CoV-2 omicron XBB.1.16 variant. Lancet Infect. Dis. 23, 655–656 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uraki, R. et al. Characterization of a SARS-CoV-2 EG.5.1 clinical isolate in vitro and in vivo. Cell Rep. 42, 113580 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Jian, F. et al. Convergent evolution of SARS-CoV-2 XBB lineages on receptor-binding domain 455-456 synergistically enhances antibody evasion and ACE2 binding. PLoS Pathog. 19, e1011868 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. E. et al. SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition. Mol. Cell 84, 2747–2764.e2747 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uriu, K. et al. Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant. Lancet Infect. Dis. 23, e460–e461 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. Nature 624, 639–644 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Immune escape of BA.2.86 is comparable to XBB subvariants from the plasma of BA.5- and BA.5-XBB-convalescent subpopulations. J. Med. Virol. 96, e29417 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Qu, P. et al. Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 BA.2.86 and FLip variants. Cell 187, 585–595.e586 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Lineage-specific pathogenicity, immune evasion, and virological features of SARS-CoV-2 BA.2.86/JN.1 and EG.5.1/HK.3. Nat. Commun. 15, 8728 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaku, Y. et al. Virological characteristics of the SARS-CoV-2 JN.1 variant. Lancet Infect. Dis. 24, e82 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, S. et al. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. Lancet Infect. Dis. 24, e70–e72 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Antibody evasiveness of SARS-CoV-2 subvariants KP.3.1.1 and XEC. Cell Rep. 44, 115543 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization Technical Advisory Group on Virus Evolution. Risk Evaluation for SARS-CoV-2 Variant Under Monitoring: NB.1.8.1 https://www.who.int/publications/m/item/risk-evaluation-for-sars-cov-2-variant-under-monitoring-nb.1.8.1 (WHO, 2025).

  • World Health Organization Technical Advisory Group on Virus Evolution. Risk Evaluation for SARS-CoV-2 Variant Under Monitoring: XFG https://www.who.int/publications/m/item/risk-evaluation-for-sars-cov-2-variant-under-monitoring-xfg (WHO, 2025).

  • Mellis, I. A. et al. Antibody evasion and receptor binding of SARS-CoV-2 LP.8.1.1, NB.1.8.1, XFG, and related subvariants. Cell Rep. 44, 116440 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Dong, E. et al. The Johns Hopkins University Center for Systems Science and Engineering COVID-19 Dashboard: data collection process, challenges faced, and lessons learned. Lancet Infect. Dis. 22, e370–e376 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dadonaite, B. et al. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 631, 617–626 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, S. et al. Beta-coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell 183, 1520–1535.e1514 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D. et al. ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress. Dev. Cell 56, 3250–3263.e3255 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaarala, M. H., Porvari, K. S., Kellokumpu, S., Kyllonen, A. P. & Vihko, P. T. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J. Pathol. 193, 134–140 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Costa, C. H. S., de Freitas, C. A. B., Alves, C. N. & Lameira, J. Assessment of mutations on RBD in the spike protein of SARS-CoV-2 Alpha, Delta and Omicron variants. Sci. Rep. 12, 8540 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, A. L. & Starr, T. N. Deep mutational scanning of SARS-CoV-2 Omicron BA.2.86 and epistatic emergence of the KP.3 variant. Virus Evol. 10, veae067 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yajima, H. et al. Structural basis for receptor-binding domain mobility of the spike in SARS-CoV-2 BA.2.86 and JN.1. Nat. Commun. 15, 8574 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, T. et al. Virological characteristics of the SARS-CoV-2 BA.2.86 variant. Cell Host Microbe 32, 170–180.e112 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Tamura, T. et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat. Commun. 14, 2800 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, J. et al. Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant. Nat. Commun. 14, 2671 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. M. et al. SARS-CoV-2 variants with NSP12 P323L/G671S mutations display enhanced virus replication in ferret upper airways and higher transmissibility. Cell Rep. 42, 113077 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taha, T. Y. et al. Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6. Nat. Commun. 14, 2308 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taha, T. Y. et al. Enhanced RNA replication and pathogenesis in recent SARS-CoV-2 variants harboring the L260F mutation in NSP6. PLoS Pathog. 21, e1013020 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furusawa, Y., Iwatsuki-Horimoto, K., Yamayoshi, S. & Kawaoka, Y. The NSP6-L260F substitution in SARS-CoV-2 BQ.1.1 and XBB.1.16 lineages compensates for the reduced viral polymerase activity caused by mutations in NSP13 and NSP14. J. Virol. 99, e0065625 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Reuschl, A. K. et al. Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants. Nat. Microbiol. 9, 451–463 (2024). Showed the evolution of the enhanced innate immune suppression capabilities by newer SARS-CoV-2 Omicron subvariants.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S., Wang, L. & Cheng, G. The battle between host and SARS-CoV-2: innate immunity and viral evasion strategies. Mol. Ther. 30, 1869–1884 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanneganti, T. D. Intracellular innate immune receptors: life inside the cell. Immunol. Rev. 297, 5–12 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie, Y. et al. SARS-CoV-2 ORF3a positively regulates NF-kB activity by enhancing IKKβ–NEMO interaction. Virus Res. 328, 199086 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H. et al. SARS-CoV-2 viroporin encoded by ORF3a triggers the NLRP3 inflammatory pathway. Virology 568, 13–22 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Severe acute respiratory syndrome coronavirus 2 ORF8 protein inhibits type I interferon production by targeting HSP90B1 signaling. Front. Cell Infect. Microbiol. 12, 899546 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Theobald, S. J. et al. Long-lived macrophage reprogramming drives spike protein-mediated inflammasome activation in COVID-19. EMBO Mol. Med. 13, e14150 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, M. et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 22, 829–838 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, G. R., To, R. K., Hanna, J. & Spector, S. A. SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience 24, 102295 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnett, K. C. et al. An epithelial–immune circuit amplifies inflammasome and IL-6 responses to SARS-CoV-2. Cell Host Microbe 31, 243–259.e246 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yamada, T. et al. RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells. Nat. Immunol. 22, 820–828 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yin, X. et al. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep. 34, 108628 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. et al. Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Sci. Adv. 7, eabe7386 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freitas, R. S., Crum, T. F. & Parvatiyar, K. SARS-CoV-2 spike antagonizes innate antiviral immunity by targeting interferon regulatory factor 3. Front. Cell Infect. Microbiol. 11, 789462 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Moustaqil, M. et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg. Microbes Infect. 10, 178–195 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naik, N. G., Lee, S. C., Veronese, B. H. S., Ma, Z. & Toth, Z. Interaction of HDAC2 with SARS-CoV-2 NSP5 and IRF3 Is not required for NSP5-Mediated inhibition of type I interferon signaling pathway. Microbiol. Spectr. 10, e0232222 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hsu, J. C., Laurent-Rolle, M., Pawlak, J. B., Wilen, C. B. & Cresswell, P. Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proc. Natl Acad. Sci. USA 118, e2101161118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kato, K. et al. Overexpression of SARS-CoV-2 protein ORF6 dislocates RAE1 and NUP98 from the nuclear pore complex. Biochem. Biophys. Res. Commun. 536, 59–66 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Rep. 34, 108761 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, H. et al. Evasion of type I interferon by SARS-CoV-2. Cell Rep. 33, 108234 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuen, C. K. et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg. Microbes Infect. 9, 1418–1428 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriyama, M., Lucas, C., Monteiro, V. S., Iwasaki, A., & Yale SARS-CoV-2 Genomic Surveillance Initiative. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proc. Natl Acad. Sci. USA 120, e2221652120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. The R203M and D377Y mutations of the nucleocapsid protein promote SARS-CoV-2 infectivity by impairing RIG-I-mediated antiviral signaling. PLoS Pathog. 21, e1012886 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao, G. et al. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev. Cell 56, 427–442.e425 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Shi, Y. et al. Mutations accumulated in the spike of SARS-CoV-2 Omicron allow for more efficient counteraction of the restriction factor BST2/Tetherin. PLoS Pathog. 20, e1011912 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H. et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe 29, 1788–1801.e1786 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Syed, A. M. et al. Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. Proc. Natl Acad. Sci. USA 119, e2200592119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cochin, M. et al. The SARS-CoV-2 Alpha variant exhibits comparable fitness to the D614G strain in a Syrian hamster model. Commun. Biol. 5, 225 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 602, 300–306 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 603, 687–692 (2022). Demonstrated that the SARS-CoV-2 Omicron variant causes attenuated (milder) disease in mice and hamsters relative to earlier strains.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuai, H. et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 603, 693–699 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki, R. et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 603, 700–705 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uraki, R. et al. Characterization of SARS-CoV-2 Omicron BA.4 and BA.5 isolates in rodents. Nature 612, 540–545 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tamura, T. et al. Comparative pathogenicity of SARS-CoV-2 Omicron subvariants including BA.1, BA.2, and BA.5. Commun. Biol. 6, 772 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imbiakha, B. et al. Age-dependent acquisition of pathogenicity by SARS-CoV-2 Omicron BA.5. Sci. Adv. 9, eadj1736 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stewart, R. et al. SARS-CoV-2 omicron BA.5 and XBB variants have increased neurotropic potential over BA.1 in K18-hACE2 mice and human brain organoids. Front. Microbiol. 14, 1320856 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizvi, Z. A. et al. Omicron sub-lineage BA.5 infection results in attenuated pathology in hACE2 transgenic mice. Commun. Biol. 6, 935 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uraki, R. et al. Characterization of SARS-CoV-2 Omicron BA.2.75 clinical isolates. Nat. Commun. 14, 1620 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Case, J. B. et al. Characterization of the SARS-CoV-2 BA.5.5 and BQ.1.1 Omicron variants in mice and hamsters. J. Virol. 97, e0062823 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Halfmann, P. J. et al. Characterization of Omicron BA.4.6, XBB, and BQ.1.1 subvariants in hamsters. Commun. Biol. 7, 331 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halfmann, P. J. et al. Transmission and re-infection of Omicron variant XBB.1.5 in hamsters. EBioMedicine 93, 104677 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, T. et al. Virological characteristics of the SARS-CoV-2 Omicron XBB.1.5 variant. Nat. Commun. 15, 1176 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izadi, A. et al. Protective non-neutralizing anti-N-terminal domain mAb maintains Fc-mediated function against SARS-COV-2 variants up to BA.2.86-JN.1 with superfluous in vivo protection against JN.1 due to attenuated virulence. J. Immunol. 213, 678–689 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolter, N. et al. Clinical severity of SARS-CoV-2 Omicron BA.4 and BA.5 lineages compared to BA.1 and Delta in South Africa. Nat. Commun. 13, 5860 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolter, N., Jassat, W., von Gottberg, A., Cohen, C. & DATCOV-Gen author group. Clinical severity of omicron lineage BA.2 infection compared with BA.1 infection in South Africa. Lancet 400, 93–96 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mefsin, Y. M. et al. Epidemiology of Infections with SARS-CoV-2 Omicron BA.2 variant, Hong Kong, January–March 2022. Emerg. Infect. Dis. 28, 1856–1858 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Port, J. R. et al. Increased small particle aerosol transmission of B.1.1.7 compared with SARS-CoV-2 lineage A in vivo. Nat. Microbiol. 7, 213–223 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munoz-Fontela, C. et al. Animal models for COVID-19. Nature 586, 509–515 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Port, J. R. et al. SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters. Nat. Commun. 12, 4985 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602, 294–299 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, B. et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592, 122–127 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Boon, A. C. M. et al. Reduced airborne transmission of SARS-CoV-2 BA.1 Omicron virus in Syrian hamsters. PLoS Pathog. 18, e1010970 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, W. et al. Reduced pathogenicity and transmission potential of omicron BA.1 and BA.2 sublineages compared with the early severe acute respiratory syndrome coronavirus 2 D614G variant in syrian hamsters. J. Infect. Dis. 227, 1143–1152 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hall, V. et al. Protection against SARS-CoV-2 after Covid-19 vaccination and previous infection. N. Engl. J. Med. 386, 1207–1220 (2022). A large-scale analysis of the level of protection achieved through inoculation and prior infection.

    Article 
    PubMed 

    Google Scholar
     

  • Tseng, H. F. et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat. Med. 28, 1063–1071 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, A., Iwagami, M., Yasuhara, J., Takagi, H. & Kuno, T. Protective effect of COVID-19 vaccination against long COVID syndrome: a systematic review and meta-analysis. Vaccine 41, 1783–1790 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, D. C. et al. SARS-CoV-2-specific plasma cells are not durably established in the bone marrow long-lived compartment after mRNA vaccination. Nat. Med. https://doi.org/10.1038/s41591-024-03278-y (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, C. Y. et al. Imprinting of serum neutralizing antibodies by Wuhan-1 mRNA vaccines. Nature 630, 950–960 (2024). Demonstrated that ancestor-strain mRNA vaccination imprints the human immune response to Omicron boosters, focusing cross-neutralizing antibodies effective against diverse variants.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yisimayi, A. et al. Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting. Nature 625, 148–156 (2024). Demonstrated that repeated exposure to Omicron can override the immune imprinting caused by ancestral SARS-CoV-2 vaccines.

    Article 
    PubMed 

    Google Scholar
     

  • Johnston, T. S. et al. Immunological imprinting shapes the specificity of human antibody responses against SARS-CoV-2 variants. Immunity 57, 912–925.e914 (2024). Demonstrated that prior antigen exposure constrains how a person’s circulating immune defenses focus their fight against newly evolved viral forms.

    Article 
    PubMed 

    Google Scholar
     

  • World Health Organization. Statement on the Antigen Composition of COVID-19 Vaccines https://www.who.int/news/item/26-04-2024-statement-on-the-antigen-composition-of-covid-19-vaccines (WHO, 2024).

  • World Health Organization. Statement on the Antigen Composition of COVID-19 Vaccines https://www.who.int/news/item/15-05-2025-statement-on-the-antigen-composition-of-covid-19-vaccines (WHO, 2025).

  • Rydyznski Moderbacher, C. et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 183, 996–1012.e1019 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oja, A. E. et al. Divergent SARS-CoV-2-specific T- and B-cell responses in severe but not mild COVID-19 patients. Eur. J. Immunol. 50, 1998–2012 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • de Silva, T. I. et al. The impact of viral mutations on recognition by SARS-CoV-2 specific T cells. iScience 24, 103353 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, G. J. et al. A bioinformatic analysis of T-cell epitope diversity in SARS-CoV-2 variants: association with COVID-19 clinical severity in the United States population. Front. Immunol. 15, 1357731 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tye, E. X. C. et al. Mutations in SARS-CoV-2 spike protein impair epitope-specific CD4+ T cell recognition. Nat. Immunol. 23, 1726–1734 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • da Silva Antunes, R. et al. Evolution of SARS-CoV-2 T cell responses as a function of multiple COVID-19 boosters. Cell Rep. 44, 115907 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Zhuang, Z. et al. Harnessing T-cells for enhanced vaccine development against viral infections. Vaccines 12, 478 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinreich, D. M. et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19. N. Engl. J. Med. 384, 238–251 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Dong, J. et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat. Microbiol. 6, 1233–1244 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takashita, E. et al. Efficacy of antibodies and antiviral drugs against COVID-19 omicron variant. N. Engl. J. Med. 386, 995–998 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Takashita, E. et al. Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariant BA.2. N. Engl. J. Med. 386, 1475–1477 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Takashita, E. et al. Efficacy of antiviral agents against the Omicron subvariant BA.2.75. N. Engl. J. Med. 387, 1236–1238 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Takashita, E. et al. In vitro efficacy of antiviral agents against Omicron subvariant BA.4.6. N. Engl. J. Med. 387, 2094–2097 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Takashita, E. et al. Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. N. Engl. J. Med. 387, 468–470 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep. 39, 110812 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imai, M. et al. Efficacy of antiviral agents against Omicron subvariants BQ.1.1 and XBB. N. Engl. J. Med. 388, 89–91 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Uraki, R. et al. Antiviral and bivalent vaccine efficacy against an Omicron XBB.1.5 isolate. Lancet Infect. Dis. 23, 402–403 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bock, A. New guidance helps clinicians use pemivibart to protect immunocompromised patients from COVID-19. JAMA https://doi.org/10.1001/jama.2024.18589 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Planas, D. et al. Escape of SARS-CoV-2 variants KP.1.1, LB.1, and KP3.3 From approved monoclonal antibodies. Pathog. Immun. 10, 1–11 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q., Guo, Y., Ho, J. & Ho, D. D. Activity of research-grade pemivibart against recent SARS-CoV-2 JN.1 sublineages. N. Engl. J. Med. 391, 1863–1864 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cihlar, T. & Mackman, R. L. Journey of remdesivir from the inhibition of hepatitis C virus to the treatment of COVID-19. Antivir. Ther. 27, 13596535221082773 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sheahan, T. P. et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 9, eaal3653 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agostini, M. L. et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 9, e00221–18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, B. G. et al. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet. Microbiol. 219, 226–233 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, A. et al. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg. Med. Chem. Lett. 22, 2705–2707 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beigel, J. H. et al. Remdesivir for the treatment of COVID-19 — final report. N. Engl. J. Med. 383, 1813–1826 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G., Hilgenfeld, R., Whitley, R. & De Clercq, E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat. Rev. Drug. Discov. 22, 449–475 (2023). Summarized the rapid advancements in COVID-19 drug discovery; discussed small-molecule antivirals, monoclonal antibodies and immunomodulatory agents; and detailed the essential lessons learned to help combat future outbreaks.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanderson, T. et al. A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature 623, 594–600 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iketani, S. et al. Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature 613, 558–564 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Owen, D. R. et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science 374, 1586–1593 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Unoh, Y. et al. Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J. Med. Chem. 65, 6499–6512 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yotsuyanagi, H. et al. Efficacy and safety of 5-day oral ensitrelvir for patients with mild to moderate COVID-19: the SCORPIO-SR randomized clinical trial. JAMA Netw. Open. 7, e2354991 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyer, A. et al. Remdesivir-induced emergence of SARS-CoV2 variants in patients with prolonged infection. Cell Rep. Med. 3, 100735 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuckerman, N. S., Bucris, E., Keidar-Friedman, D., Amsalem, M. & Brosh-Nissimov, T. Nirmatrelvir resistance — de dovo E166V/L50V mutations in an immunocompromised patient treated with prolonged nirmatrelvir/ritonavir monotherapy leading to clinical and virological treatment failure — a case report. Clin. Infect. Dis. 78, 352–355 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Raglow, Z. et al. SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the omicron period: a multicentre, prospective analysis. Lancet Microbe 5, e235–e246 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 40, 413–442 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Matz, H. C., McIntire, K. M. & Ellebedy, A. H. ‘Persistent germinal center responses: slow-growing trees bear the best fruits’. Curr. Opin. Immunol. 83, 102332 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francis, T. On the doctrine of original antigenic sin. Proc. Am. Philos. Soc. 104, 572–578 (1960).


    Google Scholar
     

  • Monto, A. S., Malosh, R. E., Petrie, J. G. & Martin, E. T. The doctrine of original antigenic sin: separating good from evil. J. Infect. Dis. 215, 1782–1788 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koutsakos, M. & Ellebedy, A. H. Immunological imprinting: understanding COVID-19. Immunity 56, 909–913 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christensen, P. A. et al. Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with coronavirus disease 2019 caused by the omicron variant of severe acute respiratory syndrome coronavirus 2 in Houston, Texas. Am. J. Pathol. 192, 642–652 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Antibody neutralisation of emerging SARS-CoV-2 subvariants: EG.5.1 and XBC.1.6. Lancet Infect. Dis. 23, e397–e398 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ying, B. et al. Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice. Cell 185, 1572–1587.e1511 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheaffer, S. M. et al. Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nat. Med. https://doi.org/10.1038/s41591-022-02092-8 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reynolds, C. J. et al. Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science 377, eabq1841 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Park, Y. J. et al. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science 378, 619–627 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Gagne, M. et al. mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell 185, 1556–1571.e1518 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsoussi, W. B. et al. SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. Nature 617, 592–598 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Tortorici, M. A. et al. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 57, 904–911.e904 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pušnik, J. et al. Vaccination impairs de novo immune response to Omicron breakthrough infection, a precondition for the original antigenic sin. Nat. Commun. 15, 3102 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voss, W. N. et al. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep. Med. 5, 101668 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. SARS-CoV-2 Omicron infection augments the magnitude and durability of systemic and mucosal immunity in triple-dose CoronaVac recipients. mBio 15, e0240723 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, L., Li, Z., Zhang, X., Li, J. & Zhu, F. CoronaVac: a review of efficacy, safety, and immunogenicity of the inactivated vaccine against SARS-CoV-2. Hum. Vaccin. Immunother. 18, 2096970 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiepers, A. et al. Molecular fate-mapping of serum antibody responses to repeat immunization. Nature 615, 482–489 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1. Cell Host Microbe 32, 315–321.e313 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, C. Q., Vishwanath, S., Carnell, G. W., Chan, A. C. Y. & Heeney, J. L. Immune imprinting and next-generation coronavirus vaccines. Nat. Microbiol. 8, 1971–1985 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. H., Davis, W. G., Sambhara, S. & Jacob, J. Strategies to alleviate original antigenic sin responses to influenza viruses. Proc. Natl Acad. Sci. USA 109, 13751–13756 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa Rocha, V. P. et al. A polyvalent RNA vaccine reduces the immune imprinting phenotype in mice and induces neutralizing antibodies against omicron SARS-CoV-2. Heliyon 10, e25539 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musunuri, S., Weidenbacher, P. A. B. & Kim, P. S. Bringing immunofocusing into focus. npj Vaccines 9, 11 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dugan, H. L. et al. Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity 54, 1290–1303.e1297 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Topol, E. J. & Iwasaki, A. Operation nasal vaccine-lightning speed to counter COVID-19. Sci. Immunol. 7, eadd9947 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuroda, M. et al. SARS-CoV-2 virus lacking the envelope and membrane open-reading frames as a vaccine platform. Nat. Commun. 16, 4453 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schon, J. et al. A safe, effective and adaptable live-attenuated SARS-CoV-2 vaccine to reduce disease and transmission using one-to-stop genome modifications. Nat. Microbiol. 9, 2099–2112 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, R. et al. Safety and immunogenicity of aerosolised Ad5-nCoV, intramuscular Ad5-nCoV, or inactivated COVID-19 vaccine CoronaVac given as the second booster following three doses of CoronaVac: a multicentre, open-label, phase 4, randomised trial. Lancet Respir. Med. 11, 613–623 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J. X. et al. Safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised Ad5-nCoV after two-dose priming with an inactivated SARS-CoV-2 vaccine in Chinese adults: a randomised, open-label, single-centre trial. Lancet Respir. Med. 10, 739–748 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, C. et al. Phase III pivotal comparative clinical trial of intranasal (iNCOVACC) and intramuscular COVID 19 vaccine (Covaxin). npj Vaccines 8, 125 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho, T. Intranasal COVID-19 vaccine fails to induce mucosal immunity. Nat. Med. 28, 2439–2440 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Madhavan, M. et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: an open-label partially-randomised ascending dose phase I trial. EBioMedicine 85, 104298 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, F. et al. Safety and efficacy of the intranasal spray SARS-CoV-2 vaccine dNS1-RBD: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 11, 1075–1088 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bachmann, M. F., Mohsen, M. O., Zha, L., Vogel, M. & Speiser, D. E. SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. npj Vaccines 6, 2 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slifka, M. K. & Amanna, I. J. Role of multivalency and antigenic threshold in generating protective antibody responses. Front. Immunol. 10, 956 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pardi, N. et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J. Exp. Med. 215, 1571–1588 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data — from vision to reality. Eur. Surveill. 22, 30494 (2017).

    Article 

    Google Scholar
     

  • de Bernardi Schneider, A. et al. SARS-CoV-2 lineage assignments using phylogenetic placement/UShER are superior to pangoLEARN machine-learning method. Virus Evol. 10, vead085 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hinrichs, A., Ye, C., Turakhia, Y. & Corbett-Detig, R. The ongoing evolution of UShER during the SARS-CoV-2 pandemic. Nat. Genet. 56, 4–7 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hui, K. P. Y. et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature 603, 715–720 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hoffmann, M. et al. Omicron subvariant BA.5 efficiently infects lung cells. Nat. Commun. 14, 3500 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Midgley, C. M. et al. An in-depth analysis of original antigenic sin in Dengue virus infection. J. Virol. 85, 410–421 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • St John, A. L. & Rathore, A. P. S. Adaptive immune responses to primary and secondary dengue virus infections. Nat. Rev. Immunol. 19, 218–230 (2019).

    Article 

    Google Scholar
     

  • McCray, P. B. Jr. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, J. et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 589, 603–607 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pons-Grifols, A. et al. A human-ACE2 knock-in mouse model for SARS-CoV-2 infection recapitulates respiratory disorders but avoids neurological disease associated with the transgenic K18-hACE2 model. mBio 16, e0072025 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Hassan, A. O. et al. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182, 744–753.e744 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Israelow, B. et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J. Exp. Med. 217, e20201241 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dinnon, K. H. 3rd et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603–1607 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leist, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183, 1070–1085.e1012 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enkirch, T. & von Messling, V. Ferret models of viral pathogenesis. Virology 479–480, 259–270 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Johnston, S. C. et al. Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure. PLoS ONE 16, e0246366 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, S. et al. Comparison of nonhuman primates identified the suitable model for COVID-19. Signal Transduct. Target. Ther. 5, 157 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, D. K. et al. Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nat. Microbiol. 6, 73–86 (2021).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular